In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
Answer:
I'm pretty sure the answer is runoff
1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
Answer:

Explanation: Weight of space probes on earth is given by:
W= weight of the object( in N)
m= mass of the object (in kg)
g=acceleration due to gravity(9.81
)
Therefore,


Similarly,


Now, considering these two parts as uniform spherical objects
Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.
Force between these two objects is given by:

G= gravitational constant (
)
= masses of the object
R= distance between their centres (in m)(18 m)
Substituiting all these values into the above formula

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.