Thorium 234 is the daughter product of Uranium-238 decays whereas protactinium 234 is the daughter product of Thorium -228.
<h3>What are the products of
Uranium-238 and Thorium -228?</h3>
If an atom of Uranium-238 decays via alpha emission, a nucleus of uranium 238 decays by alpha emission to form a daughter nucleus, thorium 234 while If an atom of Thorium -228 decayed via beta emission, the daughter isotope is protactinium 234.
So we can conclude that thorium 234 is the daughter product of Uranium-238 decays whereas protactinium 234 is the daughter product of Thorium -228.
Learn more about isotope here: brainly.com/question/14220416
#SPJ1
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
Answer:
78.96 g of NaC2H3O2
Explanation:
We are given;
- Volume of the solution as 350 mL
- Molarity of the solution as 2.75 M
- Molar mass of the solute NaC2H3O2 as 82.04 g/mol
We are required to determine the mass of the solute;
First we determine the number of moles;
Moles = Molarity × Volume
Therefore;
Moles of the solute = 2.75 M × 0.350 L
= 0.9625 moles
Second, we determine the mass
Mass = Moles × Molar mass
= 0.9625 moles × 82.04 g/mol
= 78.9635 g
= 78.96 g
Therefore, the mass of NaC2H3O2 needed is 78.96 g
Answer:
disposing waste properly is important because watersheds are the surface water features and stormwater runoff within a watershed which ultimately end up in other bodies of water. It is essential to consider these downstream impacts when developing and implementing water quality protection and restoration actions. Everything upstream ends up downstream
Explanation:
A watershed describes an area of land that contains a common set of streams and rivers that all drain into a single larger body of water, such as a larger river, a lake or an ocean. For example, the Nile River watershed is an enormous watershed
7.5 mol of hydrogen would be needed to consume the available nitrogen.
Explanation:
When hydrogen reacts with nitrogen, ammonia is formed as shown below;
3H₂ (g) + N₂ (g) → 2NH₃ (g)
As seen from the equation, every 3 moles of H₂ react with a mole of N₂ to form 2 moles of NH₃.
The limiting factor in a chemical reaction is the reactant that gets depleted first.
Because the molar mass of nitrogen gas is approximately 28g/mol, 70g of nitrogen gas would be 2.5 moles.
The reaction ratio of nitrogen to hydrogen in the reaction is 1 : 3. The reaction would require 2.5 * 3 (7.5) moles of hydrogen for a complete reaction.
However since there are only 7g on hydrogen, (Remember 1 mole of H₂ is approximately 2g), the available moles of H₂ is 7 / 2 = 3.5
3.5 moles fall short of the 7.5 moles of H₂ required for a complete reaction. H₂ gets depleted first before N₂. The reaction would require 4 more moles of H₂.