The total energy of a ball stays constant as it is thrown upward because potential energy increases while kinetic energy decreases. When the ball reaches its maximum height, the velocity is zero. Therefore, only potential energy exists rather than kinetic energy.
The thrower's movement imparts kinetic energy to a ball thrown vertically. The maximum height that can be achieved after leaving the hand will depend on the actual velocity. Air resistance causes some of this energy to be lost to the air as frictional dissipation, which warms the air in the area as well as the ball's surface.
We can just talk about how the ball moves when it is in the gravitational field of the Earth if we ignore this for the purposes of this discussion. The ball's total energy as it is released is comprised of both its gravitational potential energy and its kinetic energy, which result from the ball's velocity (due to its position).
The gravitational potential energy begins to rise as the ball moves vertically upward at precisely the same pace as it loses kinetic energy. The ball experiences a steady downward acceleration of 9.81 m/s2, which causes it to initially decline until it briefly comes to a stop at its highest point.
Due to its current position in the Earth's gravitational field relative to its initial position, all of the energy at this point is gravitational potential energy. As the ball experiences constant downward acceleration, its motion immediately becomes apparent in that direction because the acceleration easily transforms gravitational potential energy back into kinetic energy.
As a result, at every point along the trajectory, the total of these interchangeable forms of energy remains constant.
To learn more about what happens when a ball is thrown vertically upward:
brainly.com/question/1121850
<span> An electroscope that might have a static charge is tested on a metal surface. From there, the charges move to the metal and straight to the foil leaves. If they repel, or move away from each other, that means they have identical charges. This applies for both positive and negative static electricity.
work cited: School of champions, Google
</span>
Answer:
The reason why the height for the liquid is 5.18 m is because, for constant pressure, height is inversely proportional to density.
Explanation:
We know that pressure, P = ρgh where ρ = density of material, g = 9.8 m/s and h = height.
Since density of liquid = 2 × density of water = 2 × 1000 kg/m = 2000 kg/m³
Since atmospheric pressure = 101500 N/m²,
The height of liquid for this pressure is h = P/ρg = 101500/(2000 × 9.8) = 5.18 m
For the same pressure, the height for water is h = P/ρg = 101500/(1000 × 9.8) = 10.36 m
Since pressure = constant,
P = ρgh ⇒ P/ρg = h since P and g are constant, h ∝ 1/ρ
ρ₁h₁ = ρ₂h₂
So, the reason why the height for the liquid is 5.18 m is because, for constant pressure, height is inversely proportional to density.
Answer: D
Both MMPI-2 and CPI check for serious personality disorders.
MMPI - 2
MMPI - 2 stands for Minnesota Multiphasic Personality Inventory -2. It is the most widely used psychometric test to measure adult psychopathology. MMPI-2 differentiates people with hypochondriasis from normal one. MMPI-2 is able to detect unconsciously somatizing or consciously malingering in patients.
CPI
CPI stands for california psychological inventory. It is a self report inventory created by Harrision G. This test used to test the people, which are 13 years and older. It takes 40 minutes to complete the test. CPI works on "folk-concepts" which means an ordinary people can use it to describe other people around him.
The answer to this is Animal habitation