The answer is D. the way I remember it is they all end with -alism.
The bullet travels a horizontal distance of 276.5 m
The bullet is shot forward with a horizontal velocity
. It takes a time <em>t</em> to fall a vertical distance <em>y</em> and at the same time travels a horizontal distance <em>x. </em>
The bullet's horizontal velocity remains constant since no force acts on the bullet in the horizontal direction.
The initial velocity of the bullet has no component in the vertical direction. As it falls through the vertical distance, it is accelerated due to the force of gravity.
Calculate the time taken for the bullet to fall through a vertical distance <em>y </em>using the equation,

Substitute 0 m/s for
, 9.81 m/s²for <em>g</em> and 1.5 m for <em>y</em>.

The horizontal distance traveled by the bullet is given by,

Substitute 500 m/s for
and 0.5530s for t.

The bullet travels a distance of 276.5 m.
Force = (mass) x (acceleration)
Force = (18 kg) x (3 m/s²) = 54 newtons
As long as you continue pushing the cart with 54 newtons of force,
it will accelerate at 3 m/s².
At the instant you release it, or keep your hands on it but stop pushing,
it will stop accelerating. It'll continue forward at the speed it had when
the 54 newtons of force stopped.
Answer:
20 m
Explanation:
From the equation of motion,
S = ut+1/2gt²................................. Equation 1
Where S = Height, u = initial velocity, t = time, g = acceleration due to gravity.
Note: Because the rocked is being dropped from a height, acceleration due to gravity is positive (g), and initial velocity (u) is negative
Given: t = 2.0 s, g = 10 m/s², u = 0 m/s (dropped from height)
Substituting into equation 1
S = 0(2) + 1/2(10)(2)²
S = 5(4)
S = 20 m
Hence the height of the the cliff above the pool is 20 m
With the advent of the plastic balloon and the beginning of the unmanned ... That would lead to a more sophisticated ballast system that uses fine steel or iron