Iron(II) oxide react with nitric acid to produce iron(III) nitrate, nitrogen dioxide and water. Chemical reaction<span>. Balancing </span>chemical<span> equations.</span>
Answer:
See explanation
Explanation:
The synthesis of aspirin is shown in the reaction scheme attached to this answer. The production of aspirin involves the reaction of acetyl salicyclic acid and acetic anhydride. HA in the reaction mechanism refers to an acid that is used in the reaction
Similarly benzamide, is converted to the carbonyl carbocation by reaction with acid. The -NH2 group is protonated and subsequently departs as a leaving group. An OH^- completes the mechanism forming a carboxylic acid. The movement of electrons is shown in the image attached.
Again, the diazotization of benzamide using sodium nitrate and concentrated HCl yields benzene diazonium chloride. Addition of water to benzene diazonium chloride yields the benzoic acid and nitrogen gas.
Answer:
21 g of N₂ are produced by the decomposition
Explanation:
The reaction is: 2 NaN3 → 2 Na + 3 N2
2 moles of sodium nitride decompose in order to produce 2 moles of Na and 3 moles of nitrogen gas.
According to stoichiometry, ratio is 2:3. Therefore we say,
2 moles of nitride can produce 3 moles of N₂
Then, 0.5 moles of NaN₃ will produce (0.5 . 3) / 2 = 0.75 moles of N₂
We convert the moles to mass, to find the answer
0.75 mol . 28 g / 1 mol = 21 g
1. True
2. True
3. False
4. True
Answer:
9.96*10^21
Explanation:
Molar mass of K2O=29*2+16
= 74g per mol
number of moles in the sample= 1.224/ 74
=0.1654
Number of particles in 1 mole=6.0221409*10^23
Number of particles= 0.01654*6.0221409*10^23
=9.96*10^21