To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s
Answer:
constructive interference in which waves strengthen each other
Explanation:
Some definitions:
- Costructive interference occurs when two (or more) waves meet each other in phase, so with same displacement at the same point. In such situation, the two waves strengthen each other, and the amplitude of the resultant wave is the sum of the amplitudes of the individual waves
- Destructive interference occurs when two waves meet each other in anti-phase, so with opposite displacement at the same point. In such situation, the two waves cancel each other out, and the amplitude of the resultant wave is the difference of the amplitudes of the individual waves (which means zero if the two waves are identical)
For light waves interfering with each other, 'white' means costructive interference, while 'black' means destructive interference (because black is absence of colors, so this means that the waves cancel each other out). In this problem, we see that point X, Y and X are white, therefore they are point of constructive interference, where the waves strengthen each other.
Answer:
72 volts.
Explanation:
To solve this, we have to use the Ohm's law.
The ohm's law tells us that the voltage drop of a resistor is directly proportional to the current applied to the conductor.

in this case the current is 1.8 amps and the resistor is 40 ohm

so
.
Answer:
This is due to a relative decrease in atmospheric pressure in high places.
Explanation:
Given that atmospheric pressure decreases at the higher point or ground, this reduced atmospheric pressure, however, will be unable to contain the Mercury in the barometer tube.
Therefore, at the top of the mountain where the air pressure is low, the barometer reading ultimately goes down.
Hence, the level of mercury falls in a barometer while taking it to a mountain "due to a relative decrease in atmospheric pressure in high places."
<span>So when two metals of equal mass but different heat capabilities are subjected to same heat quantity, the metal with higher heat capacity have the small temperature change. Heat supplied is determined as heat capacity of the metal times the change in temperature.</span>