Answer:

%
%
Explanation:
From the exercise we know two information. The real speed and the experimental measured by the speedometer

Since the speedometer is only accurate to within 0.1km/h the experimental speed is

Knowing that we can calculate Kinetic energy for the real and experimental speed


Now, the potential error in her calculated kinetic energy is:

%
%
E = I R
That means
Voltage = (current) x (resistance)
= (2.5 A) x (2.4 ohms)
= 6 volts .
Answer:
A quantity that has magnitude and direction. It's usually represented by an arrow whose direction is the same direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Solid elements are rigid elements. For example an element iron is in solid form. You can touch it and it’s hard.