Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

you replace this value of v in the equation (1). Also, you replace the values of r and m:

hence, the tension in the string must be T = Fc = 764.41 N
REM, it is the deepest sleep and will send you deep within the mind
I believe it would be Tendonitis
M = molar mass of the helium gas = 4.0 g/mol
m = mass of the gas given = 18.0 g
n = number of moles of the gas
number of moles of the gas is given as
n = m/M
n = 18.0/4.0
n = 4.5 moles
P = pressure = 2.00 atm = 2.00 x 101325 Pa = 202650 Pa
V = Volume of balloon = ?
T = temperature = 297 K
R = universal gas constant = 8.314
Using the ideal gas equation
P V = n R T
(202650) V = (4.5) (8.314) (297)
V = 0.055 m³