Given what we know about Herbig-Haro (HH) objects, we can confirm that they are born from the collision between a jet from a star and clouds of interstellar matter.
<h3>What are Herbig-Haro (HH) objects?</h3>
- To put it simply, a Herbig-Haro (HH) object is what we observe as a bright spot in distant space. Upon closer observation we can observe that these giant bright patches are not lone objects, but in fact immense groups of interstellar matter.
<h3>How Herbig-Haro (HH) objects are formed.</h3>
- The formation of one of these interstellar groups requires an <em><u>immense amount of energy</u></em>. This energy come from the speed at which the materials that form these objects collide.
- As stated in the question, the jet released from a star in the process of being born <em><u>smashes into a giant cloud of </u></em><em><u>dust </u></em><em><u>and </u></em><em><u>interstellar material </u></em><em><u>to form the </u></em><em><u>Herbig</u></em><em><u>-</u></em><em><u>Haro </u></em><em><u>(HH) </u></em><em><u>objects</u></em>.
- This collision happens at hundreds of km/s. To put it into perspective, it would be roughly 500,000 miles per hour.
Therefore, we can confirm that option b, which states, "<em>where a jet from a </em><em>star </em><em>in the process of being born </em><em>collides </em><em>with (and lights up) a nearby cloud of </em><em>interstellar matter</em>", is the correct choice for the question pertaining to Herbig-Haro (HH) objects.
To learn more about interstellar space visit:
brainly.com/question/7106246
Answer: 
Explanation
Combustion is a chemical reaction in which hydrocarbons are burnt in the presence of oxygen to give carbon dioxide and water.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced combustion reaction for butane is,:

Answer:
There are 0.09996826 moles per liter of the solution.
Explanation:
Molar mass of HNO3: 63.02
Convert grams to moles
0.63 grams/ 63.02= 0.009996826
Convert mL to L and place under moles (mol/L)
100mL=0.1 L
0.009996826/0.1= 0.09996826 mol/L
It will go over the amount it needs to.
It’s basically that’s any system that’s closed to all transfers of matter and energy the mass of the system has to remain constant over time because they can’t change meaning you can’t add or remove from it