Answer:
[Na₂CO₃] = 0.094M
Explanation:
Based on the reaction:
HCO₃⁻(aq) + H₂O(l) ↔ CO₃²⁻(aq) + H₃O⁺(aq)
It is possible to find pH using Henderson-Hasselbalch formula:
pH = pka + log₁₀ [A⁻] / [HA]
Where [A⁻] is concentration of conjugate base, [CO₃²⁻] = [Na₂CO₃] and [HA] is concentration of weak acid, [NaHCO₃] = 0.20M.
pH is desire pH and pKa (<em>10.00</em>) is -log pka = -log 4.7x10⁻¹¹ = <em>10.33</em>
<em />
Replacing these values:
10.00 = 10.33 + log₁₀ [Na₂CO₃] / [0.20]
<em> [Na₂CO₃] = 0.094M</em>
<em />
Answer:
every method of removing heat from LED's should be considered. Conduction, convection, and radiation are the three means of heat transfer. Typically, LED's are encapsulated in a transparent resin, which is a poor thermal conductor. Nearly all heat produced is conducted through the back side of the chip. Heat is generated from the PN junction by electrical energy that was not converted to useful light, and conducted to outside ambiance through a long path, from junction to solder point, solder point to board, and board to the heat sink and then to the atmosphere. A typical LED side view and its thermal model are shown in the figures.
Explanation:
Your protons are correct but it’s 28 neutrons not 27!
Answer:
I think it is mixture and of chemical reaction
The correct answer among the choices given is option A. Hydrochloric acid is a much stronger acid than sulfuric acid given that the concentration both is equal. This can be proved by the pKa of these acids. Hydrochloric acid has a pKa of -6 while the pKa of sulfuric acid is -3. The lower the value of the pKa, the stronger the acidity of the substance.