ANOTHER RUNNING DOG
Explanation:
In the given question it is to find a suitable reference point to describe the motion of dog. Here I could suggest that it is better to compare the dog with another running dog to create the relative speed difference to get a reliable motion variation.
Because the motion of dog is in the linear with respect to the another dog and to the acceleration produced by the dog in the required interval is easy to calculate with respect to another dog which is already in motion.
Hence, I suggest that Motion of dog can be analysed better by analyse the motion variation of dog with another dog running.
Answer:
The thermal power emitted by the body is 
The net power radiated is 
Explanation:
From the question we are told that
The length of the assumed hum
an body is L = 2.0 m
The circumference of the assumed human body is 
The Stefan-Boltzmann constant is 
The temperature of skin 
The temperature of the room is
The emissivity is e=0.6
The thermal power radiated by the body is mathematically represented as

substituting value


The net power radiated by the body is mathematically evaluated as

Where A is the surface area of the body which is mathematically evaluated as

substituting values


=> 
=> 
Answer:
(a) -16.7 N s; (b) -167 N
Explanation:
Given: m = 0.530 kg; vi = 18.0 m/s; vf = 13.5 m/s; t = 0.100 s
Find: (a) Impulse, (b) Force
(a) Impulse = Momentum Change = m•Delta v = m•(vf - vi)= (0.530 kg)•( -13.5 m/s - 18.0 m/s)
Impulse = -16.7 kg•m/s = -16.7 N•s
where the "-" indicates that the impulse was opposite the original direction of motion.
(Note that a kg•m/s is equivalent to a N•s)
(b) The impulse is the product of force and time. So if impulse is known and time is known, force can be easily determined.
Impulse = F•t
F = Impulse/t = (-16.7 N s) / (0.100 s) = -167 N
where the "-" indicates that the impulse was opposite the original direction of motion.