Answer:
Thank you for this!
Explanation:
I was about to click it on a question I saw.
Answer:
you have to think then go scratch and then calculate and the design
Explanation:
Answer:
The molecular weight will be "28.12 g/mol".
Explanation:
The given values are:
Pressure,
P = 10 atm
= 
=
Temperature,
T = 298 K
Mass,
m = 11.5 Kg
Volume,
V = 1000 r
= 
R = 8.3145 J/mol K
Now,
By using the ideal gas law, we get
⇒ 
o,
⇒ 
By substituting the values, we get


As we know,
⇒ 
or,
⇒


Answer:
yes, the recordings sound is same
Explanation:
given data
recording done = 2 performances
1st show = sold out
2nd show = lightly attended
to find out
recordings sound the same and why
solution
as per given in
- 1st show is sold out it mean in this case concert hall is full so that recording sound should be high here
- 2nd case only few people are attended and struggle for ticket and orchestra
it mean it sound performance so in both case recording sound will be same
because we do not other all are sitting at front row or they sit as they want
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes