Answer:
a) 93.852 kN
b) 128.043 mm
Explanation:
Stress is load over section:
σ = P / A
If plastic deformation begins with a stress of 297 MPa, the maximum load before plastic deformation will be:
P = σ * A
316 mm^2 = 3.16*10^-4
P = 297*10^6 * 3.16*10^-4 = 93852 N = 93.852 kN
The stiffness of the specimen is:
k = E * A / l
k = 113*10^9 * 3.16*10^-4 / 0.128 = 279 MN/m
Hooke's law:
x' = x0 * (1 + P/k)
x' = 0.128 * (1 + 93.852*10^3 / 279*10^6) = 0.128043 m = 128.043 mm
Answer:
The pressure exerted by this man on ground
(a) if he stands on both feet is 8.17 KPa
(b) if he stands on one foot is 16.33 KPa
Explanation:
(a)
When the man stand on both feet, the weight of his body is uniformly distributed around the foot imprint of both feet. Thus, total area in this case will be:
Area = A = 2 x 480 cm²
A = 960 cm²
A = 0.096 m²
The force exerted by man on his area will be equal to his weight.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.096 m²
<u>P = 8166.67 Pa = 8.17 KPa</u>
(b)
When the man stand on one foot, the weight of his body is uniformly distributed around the foot imprint of that foot only. Thus, total area in this case will be:
Area = A = 480 cm²
A = 0.048 m²
The force exerted by man on his area will be equal to his weight, in this case, as well.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.048 m²
<u>P = 16333.33 Pa = 16.33 KPa</u>
Answer:
1) 4.361 x 10 raised to power 8 revolutions
2) 1.744 x 10 raised to power 9 firings
3) 2.18 x 10 raised to power 8 intake strokes
Explanation:
The step by step explanation is as shown in the attachment
Answer:
the maximum length of the specimen before deformation is 0.4366 m
Explanation:
Given the data in the question;
Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²
cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m
tensile load F = 1810 N
maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m
Now to calculate the maximum length
for the deformation, we use the following relation;
= [ Δl × E × π × D² ] / 4F
so we substitute our values into the formula
= [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )
= 3161.025289 / 7240
= 0.4366 m
Therefore, the maximum length of the specimen before deformation is 0.4366 m
The statement "Visual perception is a mental process that is non selective" is false, it is a psychic function that allows the organism to capture, elaborate and interpret selective information that comes from the environment.
<h2>What is visual perception?</h2>
Visual perception is that inner sensation of apparent knowledge, resulting from a specific stimulus or light impression recorded by the eyes.
<h3>Characteristics of visual perception</h3>
- It incorporates the sensory stimuli received from objects, situations or events and converts them into a meaningful interpretation experience.
- It is an active process of the brain through which an external reality is created by transforming the light information captured by the eye.
Therefore, we can conclude that visual perception is the interpretation made by the brain of the different organisms of the stimuli received through the senses.
Learn more about visual perception here: brainly.com/question/10259599