Answer:
Explanation:
Change in length of spring = 2.13 m
Component of weight acting on spring = mg sinθ
so
mg sinθ = k x where k is spring constant and x is total stretch due to force on the spring.
Here x = 2.13
mg sin17 = k x 2.13
31 x 9.8 sin17 = k x 2.13
k = 41.7 N/m
b ) In case surface had friction , spring would have stretched by less distance .
It is so because , the work done by gravity in stretching down is stored as potential energy in spring . In case of dissipative force like friction , it also takes up some energy in the form of heat etc so spring stretches less.
Answer:he conducts the investigation to see the effect acidic water has on limestone
Explanation:
We have,
- Jane mass is 55 kg
- His body covered with 700 nails all of them having a surface area of 1.00 mm² each = 700 × 1 = 700 mm² = 700/1000000 = 7/10000
We know that,
Let's calculate force as we already have area;
- F = ma
- F = 55 × 9.8 { Acceleration due to gravity }
- F = 539 N
Now, if should she would be on 700 nails then pressure will be;
- P = F/A
- P = 539/7 × 10000
- P = 5390000/7
- P = 770,000 Pascal
And if should would be on a 1 nail only,
- P = F/A
- P = 539/1 × 1000000
- P = 539000000 Pascal
<u>A</u><u>s</u><u>,</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>n</u><u>o</u><u>t</u><u>i</u><u>c</u><u>e</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u>s</u><u>e</u><u>l</u><u>f</u><u> </u><u>t</u><u>h</u><u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>r</u><u>e</u><u>s</u><u>s</u><u>u</u><u>r</u><u>e</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>b</u><u>e</u><u> </u><u>s</u><u>o</u><u> </u><u>h</u><u>i</u><u>g</u><u>h</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>o</u><u>n</u><u>l</u><u>y</u><u> </u><u>1</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>b</u><u>e</u><u>c</u><u>a</u><u>u</u><u>s</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u>,</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>p</u><u>a</u><u>s</u><u>s</u><u> </u><u>through</u><u> </u><u>j</u><u>a</u><u>n</u><u>e</u><u>'</u><u>s</u><u> </u><u>b</u><u>o</u><u>d</u><u>y</u><u>.</u>
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

Valleys are one of the most common landforms on the Earth and they are formed through erosion or the gradual wearing down of the land by wind and water. In river valleys for example, the river acts as an erosional agent by grinding down the rock or soil and creating a valley