It is the acceleration of an object in free fall
Explanation:
When an object is in free fall, it is subjected only to one force: the force of gravity, which pulls the object downward, with a magnitude (near the Earth's surface) which is given by

where
m is the mass of the object
is the acceleration due to gravity
We can apply Newton's second law to the object in free fall:

where
F is the net force on the object
a is the acceleration of the object
m is the mass
However, since there is only the force of gravity acting on the object, the net force is equal to the force of gravity: so we can equate the two equations, obtaining that

Which means that the acceleration of an object in free fall (acted upon the force of gravity only) is equal to the acceleration due to gravity,
.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The same 500N, is the Newton’s Third Law.
Answer:
(3) The period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4) he gravitational force between the Sun and Neptune is 6.75 x 10²⁰ N
Explanation:
(3) The period of a satellite is given as;

where;
T is the period of the satellite
M is mass of Earth
r is the radius of the orbit
Thus, the period of the satellite is independent of its mass, an increase in the mass of the satellite will not affect its period around the Earth.
(4)
Given;
mass of the ball, m₁ = 1.99 x 10⁴⁰ kg
mass of Neptune, m₂ = 1.03 x 10²⁶ kg
mass of Sun, m₃ = 1.99 x 10³⁰ kg
distance between the Sun and Neptune, r = 4.5 x 10¹² m
The gravitational force between the Sun and Neptune is calculated as;

Total mechanical energy = kinetic energy + potential energy
E = KE + PE
E = ½mv² + mgh
E = ½(0.1 kg)(2 m/s)² + (0.1 kg)(9.8 m/s²)(1.5 m)
E = 0.2 J + 1.47 J
E = 1.67 J