The answer is D, because "Animals without a backbone are invertebrates."
Answer:
Adding sodium or potassium hydroxide in amounts sufficient to convert all the H2SO4 into Na2SO4 would approximately neutralize the solution. The error would be the result of the imbalance between the basicity of the hydroxide and the acidity of the bisulfate (HSO4) anion. An adjustment in concentration would have to be made to achieve an accurate approximate pH of 7. But then you didn’t ask how much we would need to add.
Explanation:
<em><u>please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u> </u></em>
Answer:
The amount of NaOH required to prepare a solution of 2.5N NaOH.
The molecular mass of NaOH is 40.0g/mol.
Explanation:
Since,
NaOH has only one replaceable -OH group.
So, its acidity is one.
Hence,
The molecular mass of NaOH =its equivalent mass
Normality formula can be written as:
Substitute the given values in this formula to get the mass of NaOH required.

Hence, the mass of NaOH required to prepare 2.5N and 1L. solution is 100g
Answer:
42 m/s
Explanation:
To we convert units for speed we can use dimensional analysis. First thing we do is seperate the measurement into a fraction. After this we can multiply by 1km over 0.62137 miles. We do this so that the miles cancel out.
×
= 
After this we can use a conversion factor and divide by 3.6.
÷ 3.6 = 42 m/s
Answer:
The answer to your question is given below.
Explanation:
To prepare 50mL of 3M HCl, we must calculate the volume of the stock solution needed. This can obtained as follow:
Molarity of stock solution (M1) = 12M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 3M
Volume of diluted solution (V2) = 50mL
The volume of the stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12 x V1 = 3 x 50
Divide both side by 12
V1 = (3 x 50)/12
V1 = 12.5mL
The volume of the stock solution needed is 12.5mL
Therefore, to prepare 50mL of 3M HCl, we must measure 12.5mL of the stock solution i.e 12M HCl and then, add water to the mark in a 1L volumetric flask. Now we can measure out 50mL of the solution.