Answer:
C.
Explanation:
Newton's 3rd law of motion: Inertia. It states that bodies at rest tend to stay at rest.
Answer:
C2H5OH has a greater boiling point.
Explanation:
It is a bigger molecule than C2H6.
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer: see figure attached and explanation below.
Explanation:
1) Chemical equation (given):
Fe + CuCl₂ → Cu + FeCl₂
2) ΔHf reactants: -256 kJ/mol (given)
3) ΔHf products: - 321 kJ/mol (given)
4) ΔH reaction = ΔHf products - ΔHf reactants = - 321 kJ/mol - (- 256 kJ/mol) = - 65 kJ/mol
5) Conclusion:
i) Since ΔHf of products is less (more negative) than ΔHf of reactants, the reaction is exhotermic: the reaction released energy, which is the reason why the products content less potential energy than the reactants.
ii) Then, the energy diagram is the typical one of an exothermic reaction: the products start a certain potential energy level, the energy incrases until reaching the activation energy (the energy barrier to form the activated complex) and then energy decreases until a level below the energy of the reactants.
iii) See the attached figure with such kind of diagram showing the products at a lower level than the reactans
Answer:
Lewis acid is a substance that donates a lone-pair of electrons.
Explanation:
What is said in the statement corresponds to a Lewis base, not an acid. For example, NH3 is a Lewis base, since it is capable of donating its pair of electrons. Trimethylborane (Me3B) is a Lewis acid, since it is capable of accepting a solitary pair.