The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Answer:
250000 μL
Explanation:
If 1 L = 1000 mL
Then X L = 250 mL
X = (1 × 250) / 1000 = 0.25 L
Now we can calculate the number of microliters (μL) in 0.25 L:
if 1 μL = 10⁻⁶ L
then X μL = 0.25 L
X = (1 × 0.25) / 10⁻⁶ =250000 μL
Crush the limestone... it would give more area for the acid to react
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be,
Explanation : Given,
Wavelength =
conversion used :
Formula used :
As,
So,
where,
= frequency
h = Planck's constant =
= wavelength =
c = speed of light =
Now put all the given values in the above formula, we get:
Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be,