Answer:
The rate of the reaction increased by a factor of 1012.32
Explanation:
Applying Arrhenius equation
ln(k₂/k₁) = Ea/R(1/T₁ - 1/T₂)
where;
k₂/k₁ is the ratio of the rates which is the factor
Ea is the activation energy = 274 kJ/mol.
T₁ is the initial temperature = 231⁰C = 504 k
T₂ is the final temperature = 293⁰C = 566 k
R is gas constant = 8.314 J/Kmol
Substituting this values into the equation above;
ln(k₂/k₁) = 274000/8.314(1/504 - 1/566)
ln(k₂/k₁) = 32956.4589 (0.00198-0.00177)
ln(k₂/k₁) = 6.92
k₂/k₁ = exp(6.92)
k₂/k₁ = 1012.32
The rate of the reaction increased by 1012.32
1. 0.33 M
2. 0.278 M
<h3>Further explanation</h3>
Molarity is a way to express the concentration of the solution
Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
1. 0.350 mol of NaOH in 1.05 L of solution.
n=0.35
V=1.05 L
Molarity :

2. 14.3 g of NaCl in 879 mL of solution.
mol NaCl(MW=58.5 g/mol) :

Molarity :

The answer is metal. Metals are always named first in ionic compounds, like KNO3 for example. I hope this helps!
<h3>
Answer:</h3>
0.89 J/g°C
<h3>
Explanation:</h3>
Concept tested: Quantity of heat
We are given;
- Mass of the aluminium sample is 120 g
- Quantity of heat absorbed by aluminium sample is 9612 g
- Change in temperature, ΔT = 115°C - 25°C
= 90°C
We are required to calculate the specific heat capacity;
- We need to know that the quantity of heat absorbed is calculated by the product of mass, specific heat capacity and change in temperature.
That is;
Q = m × c × ΔT
- Therefore, rearranging the formula we can calculate the specific heat capacity of Aluminium.
Specific heat capacity, c = Q ÷ mΔT
= 9612 J ÷ (120 g × 90°C)
= 0.89 J/g°C
Therefore, the specific heat capacity of Aluminium is 0.89 J/g°C
Answer:
The answer to your question is P2 = 170.9 torr
Explanation:
Data
Volume 1 = 12.1 l Volume 2 = 21.1 l
Temperature 1 = 241 °K Temperature 2 = 298°K
Pressure 1 = 546 torr Pressure 2 = ?
Process
To solve this problem use the combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = T1V1T2 / T1V2
-Substitution
P2 = (241 x 12.1 x 298) / (241 x 21.1)
-Simplification
P2 = 868997.8 / 5085.1
-Result
P2 = 170.9 torr