Answer:
The simplified expression for the fraction is 
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:



since cM is the concentration of the inert molecule
Answer:The change in concentration of a reactant or product per unit time
Explanation:
Answer:
See the answer below
Explanation:
<em>The correct answer would be that the solute particles lower the solvent's vapor pressure, thus requiring a higher temperature to cause boiling.</em>
Dissolving a solute particle in a solvent leads to a decrease in the vapor pressure of the solvent above the resulting solution when compared to the pure solvent. The lower the vapor pressure of a liquid, the higher the temperature required for the liquid to boil and vice versa. Hence, a higher temperature would be needed to boil a solvent with dissolved solutes.