When the temperature lowers the plants can freeze and die. One way to prevent that is to cover the plants so they dont freeze
I think the correct answer is
D) Ted associated being asked a question with embarrassment.
Glad I could help, and good luck!
AnonymousGiantsFan
Refer to the diagram shown below.
For horizontal equilibrium,
T₃ cos38 = T₂ cos 50
0.788 T₃ = 0.6428 T₂
T₃ = 0.8157 T₂ (1)
For vertical equilibrium,
T₂ sin 50 + T₃ sin 38 = 430
0.766 T₂ + 0.6157 T₃ = 430
1.2441 T₂ + T₃ = 698.392 (2)
Substitute (1) into (2).
(1.2441 + 0.8157) T₂ = 698.392
T₂ = 339.058 N
T₃ = 0.8157(399.058) = 276.571 N
Answer:
T₂ = 339.06 N
T₃ = 276.57 N
Answer:
4.7 x 10³ rad / s
Explanation:
During the time light goes and comes back , one slot is replaced by next slot while rotating before the light source
Time taken by light to travel a distance of 2 x 500 m is
= (2 x 500) / 3 x 10⁸
= 3.333 x 10⁻⁶ s .
In this time period, two consecutive slots come before the source of light one after another by rotation. There are 400 slots so time taken to make one rotation
= 3.333 x 10⁻⁶ x 400
= 13.33 x 10⁻⁴ s
This is the time period so
T = 13.33 X 10⁻⁴
Angular speed
= 2π / T
= 
4.7 x 10³ rad / s
<em>Given that:</em>
mass of the ball (m) = 0.5 Kg ,
ball strikes the wall (v₁) = 5 m/s ,
rebounds in opposite direction (v₂) = 2 m/s,
time duration (t) = 0.01 s,
<em> Determine the force (F) = ?</em>
We know that from Newton's II law,
<em>F = m. a</em> Newtons
(velocity acting in opposite direction, so <em>a = ( (v₁ + v₂)/t</em>
= m × (v₁ + v₂)/t
= 0.5 × (5 + 2)/0.01
= 350 N
<em>The force acting up on the ball is 350 N</em>