Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Answer:
beam with a span length of 10 ft, a width of 8 in, and an effective depth of 20 in. Normal weight concrete is used for the beam. This beam carries a total factored load of 9.4 kips. The beam is reinforced with tensile steel, which continues uninterrupted into the support. The concrete has a strength of 4000 psi, and the yield strength of the steel is 60,000 psi. Using No. 3 bars and 60,000 psi steel for stirrups, do the followings:
Complete Question
Complete Question is attached below.
Answer:

Explanation:
From the question we are told that:
Diameter 
Power 
Head loss 




Generally the equation for Power is mathematically given by

Therefore



Since

Where


Therefore


Answer:
Time taken for the capacitor to charge to 0.75 of its maximum capacity = 2 × (Time take for the capacitor to charge to half of its capacity)
Explanation:
The charging of a capacitor/the build up of its voltage follows an exponential progression and is given by
V(t) = V₀ [1 - e⁻ᵏᵗ]
where k = (1/time constant)
when V(t) = V₀/2
(1/2) = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.5
In e⁻ᵏᵗ = In 0.5 = - 0.693
-kt = - 0.693
kt = 0.693
t = (0.693/k)
Recall that k = (1/time constant)
Time to charge to half of max voltage = T(1/2)
T(1/2) = 0.693 (Time constant)
when V(t) = 0.75
0.75 = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.25
In e⁻ᵏᵗ = In 0.25 = -1.386
-kt = - 1.386
kt = 1.386
t = 1.386(time constant) = 2 × 0.693(time constant)
Recall, T(1/2) = 0.693 (Time constant)
t = 2 × T(1/2)
Hope this Helps!!!