B = 0.018 T Ans,
Since, it is moving in a circular path, thus, centripetal force will act on it i.e.
F =

where, m is the mass of the object, v is the velocity and r is the radius of circular path.
And, since a positive charge is moving, it will create magnetic force which is equal to F = qvB
where q is the charge, v is the velocity of the particle and B is the magnetic field.
Now, the two forces will be equal,
i.e.

= qvB
⇒

= qB
⇒B =

<span>putting the values, we get,
</span>
use q = 1.6 * 10^ -19
⇒ B = 0.018 T
Answer:
,
, 
Explanation:
The cube root of the complex number can determined by the following De Moivre's Formula:
![z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%20%3D%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%20%7D%5Ccdot%20%5Cleft%5B%5Ccos%5Cleft%28%5Cfrac%7Bx%20%2B%202%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%20%2B%20i%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7Bx%2B2%5Cpi%5Ccdot%20k%7D%7Bn%7D%20%5Cright%29%5Cright%5D)
Where angles are measured in radians and k represents an integer between
and
.
The magnitude of the complex number is
and the equivalent angular value is
. The set of cubic roots are, respectively:
k = 0
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B1.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 1
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B3.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

k = 2
![z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]](https://tex.z-dn.net/?f=z%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5Ccdot%20%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%2Bi%5Ccdot%20%5Csin%5Cleft%28%5Cfrac%7B5.817%5Cpi%7D%7B3%7D%20%5Cright%29%5D)

Answer:
Lifting force, F = 21240 N
Explanation:
It is given that,
Mass of the helicopter, m = 1800 kg
It rises with an upward acceleration of 2 m/s². We need to find the lifting force supplied by its rotating blades. It is given by :
F = mg + ma
Where
mg is its weight
and "ma" is an additional acceleration when it is moving upwards.
So, 
F = 21240 N
So, the lifting force supplied by its rotating blades is 21240 N. Hence, this is the required solution.
The emf is induced in the wire will be 1.56 ×10 ⁻³ V. The induced emf is the product of the magnetic field,velocity and length of the wire.
<h3>What is induced emf?</h3>
Emf is the production of a potential difference in a coil as a result of changes in the magnetic flux passing through it.
When the flux coupling with a conductor or coil changes, electromotive Force, or EMF, is said to be induced.
The given data in the problem is;
B is the magnitude of the magnetic field,= 5.0 ×10⁻⁵ T
V(velocity)=125 M/SEC
L(length)=25 cm=0.25 m
The maximum emf is found as;
E=VBLsin90°
E=125 × 5.0 × 10⁻⁵ ×0.25
E=1.56 ×10 ⁻³ V
Hence, the emf is induced in the wire will be 1.56 ×10 ⁻³ V
To learn more about the induced emf, refer to the link;
brainly.com/question/16764848
#SPJ1
The concept of power is given by the relationship between intensity and area, that is to say that power is defined as

Our values are given under the condition of,


The power is proportional to the Area, and in turn, we know that the Area of a circle is the product between
times the radius squared, therefore the power is proportional to the radius squared.

For both panels we would have to



Therefore the correct option is option C.9