When object travels with uniform velocity, no force acts on it. hence , yes.
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
<h3><u>Answer;</u></h3>
= 8.55 Joules
<h3><u>Explanation;</u></h3>
Work done is the product of force and the distance moved by an object.
Work done = Force × distance
Force = 95 Newtons
Distance = X2 -X1
= 4 - (-5)
= 9 cm
Thus;
work done = 95 × 9/100
<u>= 8.55 Joules </u>
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
The state of matter would have to be solid