Explanation:
By using v=( f )x( lambda )
v= 45 s^-1 x 3 m
Therefore v = 135 ms^-1
Answer:
<u><em>The truck was moving 16.5 m/s during the time it took to stop, which was 3 seconds. </em></u>
- <u><em>Initial velocity = 33 m/s</em></u>
- <u><em>Final velocity = 0 m/s</em></u>
- <u><em>Average velocity = (33 + 0) / 2 m/s = 16.5 m/s</em></u>
Explanation:
- <u><em>First, how long does it take the truck to come to a complete stop?</em></u>
- <u><em>( 33 m/s ) / ( 11 m / s^2 ) = 3 seconds</em></u>
- <u><em>Then we can look at the average velocity between when the truck started decelerating and when it came to a complete stop. Because the deceleration is constant (always 11m/s^2) we can use this trick.</em></u>
Answer:
x = 1.00486 m
Explanation:
The complete question is:
" The potential energy between two atoms in a particular molecule has the form U(x) =(2.6)/x^8 −(5.1)/x^4 where the units of x are length and the num- bers 2.6 and 5.1 have appropriate units so that U(x) has units of energy. What is the equilibrium separation of the atoms (that is the distance at which the force between the atoms is zero)? "
Solution:
- The correlation between force F and energy U is given as:
F = - dU / dx
F = - d[(2.6)/x^8 −(5.1)/x^4] / dx
F = 20.8 / x^9 - 20.4 / x^5
- The equilibrium separation distance between atoms is given when Force F is zero:
0 = 20.8 / x^9 - 20.4 / x^5
0 = 20.8 - 20.4*x^4
x^4 = 20.8/20.4
x = ( 20.8/20.4 )^0.25
x = 1.00486 m
Answer:
Tangential acceleration is in the direction of velocity - along the circumference of a circle if the object is undergoing circular motion
a = (V2 - V1) / T
Radial acceleration is perpendicular to the direction of motion if the object is not moving in a straight line (perhaps along the circumference of a circle)
a = m V^2 / R = m ω^2 R where R is the radius vector of the velocity - note that the Radius vector is directed from the center of motion to the object and for circular motion would be constant in magnitude but not in direction