<u>Answer:</u> The hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
<u>Explanation:</u>
We are given:
Concentration of barium hydroxide = 0.00066 M
The chemical equation for the dissociation of barium hydroxide follows:

1 mole of barium hydroxide produces 1 mole of barium ions and 2 moles of hydroxide ions
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution
To calculate pOH of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=(2\times 0.00066)=1.32\times 10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%282%5Ctimes%200.00066%29%3D1.32%5Ctimes%2010%5E%7B-3%7DM)
Putting values in above equation, we get:

Hence, the hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
The molecule for ethane is C2H6. or CH3-CH3.
Carbon LOVES hydrogen. If possible, Carbon would have four bonds attach to hydrogens. IN this molecule, one of the bond is used to attach a carbon to another carbon, so instead of 4 hydrogens, each carbon would have 3 hydrogens..
First, find moles of gold given the mass of the sample:
(35.9g Au)/(197.0g/mol Au) = 0.182mol Au
Second, multiply moles of Au by Avogrado's number:
(0.182mol)(6.02 x10^23)= 1.10x10^23 atoms Au
Answer:
Where the products are H2O and Ba(NO3)2
Explanation:
A base, as, barium hydroxide (Ba(OH)2) reacts with an acid (HNO3), producing water (H2O), and the related salt (Ba(NO3)2) in a reaction called <em>neutralization reaction.</em>
The balanced reaction is:
Ba(OH)2 + 2 HNO3 → 2 H2O + Ba(NO3)2
<em>Where the products are H2O and Ba(NO3)2</em>
Answer:
idk right now but i will let you know when i get the answer! Ok?