Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say

here given that


now we will plug in all data in the above equation


so it will have net force 4501.9 N which will be reported by sensor
9.8 ms^-2 is acceleration
Answer:
velocity = 1527.52 ft/s
Acceleration = 80.13 ft/s²
Explanation:
We are given;
Radius of rotation; r = 32,700 ft
Radial acceleration; a_r = r¨ = 85 ft/s²
Angular velocity; ω = θ˙˙ = 0.019 rad/s
Also, angle θ reaches 66°
So, velocity of the rocket for the given position will be;
v = rθ˙˙/cos θ
so, v = 32700 × 0.019/ cos 66
v = 1527.52 ft/s
Acceleration is given by the formula ;
a = a_r/sinθ
For the given position,
a_r = r¨ - r(θ˙˙)²
Thus,
a = (r¨ - r(θ˙˙)²)/sinθ
Plugging in the relevant values, we obtain;
a = (85 - 32700(0.019)²)/sin66
a = (85 - 11.8047)/0.9135
a = 80.13 ft/s²
Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:
