Answer: A
Explanation:
A Gold (Au) atom has 79 protons and 79 electrons. A typical gold atom has 118 neutrons, though there are 18 other radioisotopes discovered so far. 79 is its charge (atomic number), which is both its proton number and electron number
The question incomplete , the complete question is:
A student dissolves of 18.0 g urea in 200.0 mL of a solvent with a density of 0.95 g/mL . The student notices that the volume of the solvent does not change when the urea dissolves in it. Calculate the molarity and molality of the student's solution. Round both of your answers to significant digits.
Answer:
The molarity and molality of the student's solution is 1.50 Molar and 1.58 molal.
Explanation:
Moles of urea = 
Volume of the solution = 200.0 mL = 0.2 L (1 mL = 0.001 L)

Molarity of the urea solution ;

Mass of solvent = m
Volume of solvent = V = 200.0 mL
Density of the urea = d = 0.95 g/mL


(1 g = 0.001 kg)
Molality of the urea solution ;


The molarity and molality of the student's solution is 1.50 Molar and 1.58 molal.
Answer:
12.50g
Explanation:
T½ = 2.5years
No = 100g
N = ?
Time (T) = 7.5 years
To solve this question, we'll have to find the disintegration constant λ first
T½ = In2 / λ
T½ = 0.693 / λ
λ = 0.693 / 2.5
λ = 0.2772
In(N/No) = -λt
N = No* e^-λt
N = 100 * e^-(0.2772*7.5)
N = 100*e^-2.079
N = 100 * 0.125
N = 12.50g
The sample remaining after 7.5 years is 12.50g
This is an acid – base reaction and this always result a salt and water
in a neutralization reaction. <span>
The salt that is formed will be calcium bromide (calcium
is located in group 2 so calcium bromide has a formula of CaBr2)
so essentially we got:
HBr + Ca(OH)2 ------> CaBr2 + H2O </span>
balancing the elements: <span>
<span>2HBr(aq) + Ca(OH)2(aq) --------> CaBr2(aq) +
2H2O(l)</span></span>