Answer:
A. It makes astronauts weightless.
Explanation:
Gravity does not make astronauts feel weightless. Astronauts are weightless because they are orbiting at the same rate as their shuttle.
Although the force of gravity weakens as one moves away from the earth surface, it does not mean that this force is absent in orbit
- Gravitational force has a constant acceleration value near the earth surface which is commonly known to be 9.8m/s².
- It is a force of attraction tending to hold and bind bodies together so far they have mass.
- This force keeps every thing from escaping space-ward from the earth surface.
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N