Answer:
The orbital speed can be found using v = SQRT(G*M/R). The R value (radius of orbit) is the earth's radius plus the height above the earth - in this case, 6.59 x 106 m.
No, the density of diamond and graphite would not be the same
Explanation:
What is density?
Density is the amount of substance per unit volume. It is simply mass divided by volume.
Density is greatly influenced by the way substances are packed.
Substances that are well packed will have lower volume for the same amount of matter than another that is poorly packed.
- The carbon atoms in graphite are poorly packed. They are arranged layers upon layers.
- Diamond carbon atoms have a cross-linked networked pattern. They are well packed.
- For the same mass of matter, graphite will take up more space than diamond.
Since:
Density = 
The one that has a lesser volume will have a higher density.
Therefore diamond will have a higher density.
learn more:
Density brainly.com/question/5055270
#learnwithBrainly
Answer:
t = 0.2845Nm (rounded to 4 decimal places)
Explanation:
The disk rotates at a distance of an arc length of 28cm
Arc length = radius × central angle × π/180
28cm = 10cm × central angle × π/180
Central angle =
× 180/π ≈ 160.4°
Torque (t) = rFsin(central angle) , where F is the applied force
Radius in meters = 10/100 = 0.1m
t = 0.1m × 16N × sin160.4°
t = 0.2845Nm (rounded to 4 decimal places)
Answer:
Hey
It would have to be C because no net energy is lost.
Answer: 25N
method: total force in the right hand direction is 100N and total force in the left hand direction is 125N. To get the net force, we add forces if they are in the same direction and substract if they are in opposite directions. since 100N and 125N are in opposite directions, we substract the larger value from the smaller value. Then we get 25N in the left hand direction as the final answer.