1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
14

Describe the interactive roles and statuses of individuals and groups in your conmunity

Physics
1 answer:
marta [7]3 years ago
5 0
Social groups<span> that we as </span>individuals<span> belong to, we have a </span>status<span> and a </span>role<span> to fulfill.</span>Status<span> is our relative social position within a </span>group<span>, while a </span>role<span> is ... Because of this </span>status<span>, he is expected to fulfill a </span>role<span> for his children ... These make it a crime to hire and promote people because they are </span>your<span> relatives.
put me as a brainiest </span><span />
You might be interested in
When the displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position, what fraction of the
KonstantinChe [14]

Answer:

The ratio is  KE : TM  =  0.75

Explanation:

from the question we are told that

  The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position

Generally the total mechanical  energy of the mass is mathematically represented as

        TM  =  \frac{1}{2}  *  k  *  A^2

Here  k is the spring constant  ,  A is the total displacement of the  the mass  from maximum  compression to maximum extension of the spring

Generally this total mechanical energy is mathematically represented as

        TM  =  KE  + PE

=>     KE = TM  - PE

Here the potential  energy of the mass is mathematically represented as

     PE   = \frac{1}{ 2}  *  k *  [ x ]^2

Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is  

      x = \frac{A}{2}

So

     PE   = \frac{1}{ 2}  *  k *  [ \frac{A}{2}  ]^2

So

      KE =  \frac{1}{2}  *  k  *  A^2 - \frac{1}{2}  *  k  *  [\frac{A}{2} ]^2

=>    KE =  \frac{1}{2}  *  k  *  A^2 - \frac{1}{8}  *  k  *  A ^2

=>    KE =  0.375  *  k  *  A^2

So the ratio of  KE :  TM is  mathematically represented as

       \frac{KE}{TM} =  \frac{0.375  k A^2 }{0.5 k A^2}

=>    \frac{KE}{TM} = 0.75

3 0
3 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
A man attaches a divider to an outdoor faucet so that water flows through a single pipe of radius 9.25 mm into four pipes, each
irinina [24]

Answer:

1.24 m/s

Explanation:

Metric unit conversion:

9.25 mm = 0.00925 m

5 mm = 0.005 m

The volume rate that flow through the single pipe is

\dot{V} = vA = 1.45 * \pi * 0.00925^2 = 0.00039 m^3/s

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

\dot{V_n} = \dot{V} / 4 = 0.00039 / 4 = 9.74\times10^{-5} m^3/s

So the flow speed of each of the narrower pipe is:

v_n = \frac{\dot{V_n}}{A_n} = \frac{\dot{V_n}}{\pi r_n^2}

v_n = \frac{9.74\times10^{-5}}{\pi 0.005^2} = 1.24 m/s

8 0
3 years ago
True or False. Where an element is located on the periodic table can help predict some of its properties.
lubasha [3.4K]
It’s true there are sections in the periodic table that define the elements.
7 0
3 years ago
Read 2 more answers
Why is 30% recommended as the minimum Michelson contrast?
forsale [732]

Answer:

Explained

Explanation:

Michelson contrast is used for patterns where the distribution of bright and dark segments is nearly equal.

It is given by:

m= \frac{I_{max}-I{min}}{I_{max}+I{min} }

where I_max = maximum illumination and I_min = minimum illumination

we know that

typically, I_min = 54% of I_max  (general standard)

or I_min = 0.54 I_max

putting this value in above equation to get m

this approximately corresponds to m = 0.3 or 30%

hence, 30% recommended as the minimum Michelson contrast

6 0
3 years ago
Other questions:
  • A boat of mass 225 kg drifts along a river at a speed of 21 m/s to the west. what impulse is required to decrease the speed of t
    11·2 answers
  • Explain how the meanings of the terms biotic factor and abiotic factor differ ?
    12·1 answer
  • A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
    13·2 answers
  • Which best describes the energy used to pluck guitar strings to make sound?
    12·2 answers
  • Desde lo alto de un acantilado de 140 m, se lanza verticalmente un objeto hacia abajo con velocidad de 3m/s. Entonces la magnitu
    10·1 answer
  • Quickly spinning the handle of a hand generator, Kristina is able to light three bulbs in a circuit. When she spins the generato
    11·1 answer
  • Whitch group of elaments shares charicteristics whith both nonmetals and metloids
    5·1 answer
  • Car 1 drives 20 mph to the south, and car 2 drives 30 mph to the north. From the frame of reference of car 1, what is the veloci
    11·2 answers
  • A researcher collected data on 100 random homes in Wake County. She then created the following histogram of when each home was b
    9·1 answer
  • A class of students performed the heat transfer experiment shown in the picture. In the experiment, three plastic dishes were pa
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!