Answer:
Total ATP molecules produced = 66 molecules of ATP
Explanation:
A 10-carbon fatty acid when it has undergone complete oxidation will yield 5 acetyl-CoA molecules and 4 FADH₂ and 4 NADH molecules each. Each of the 5 acetyl-CoA molecules enters into the citric acid cycle and is completely oxidized to yield further ATP and FADH₂ and NADH molecules.
The total yield of ATP in the various enzymatic step is calculated below:
Acyl-CoA dehydrodenase = 4 FADH₂
β-Hydroxyacyl-CoA dehydrogenase = 4 NADH
Isocitrate dehydrogenase = 5 NADH
α-Ketoglutarate dehydrogenase = 5 NADH
Succinyl-CoA synthase = 5 ATP (from substrate-level phosphorylation of GDP)
Succinate dehydrogenase = 5 FADH₂
Malate dehydrogenase = 5 NADH
Total ATP from FADH₂ molecoles = 9 * 1.5 = 13.5
Total NADH molecules = 19 * 2.5 = 47.5
Total ATP molecules produced = 13.5 + 47.5 + 5
Total ATP molecules produced = 66 molecules of ATP
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 50 kPa x 2 L / .02 L
<span>P2 = 5000 kPa</span>
Answer:
Explanation:
During the seventeenth and especially eighteenth centuries, driven both by a desire to understand nature and a quest to make balloons in which they could fly (Figure 1), a number of scientists established the relationships between the macroscopic physical properties of gases, that is, pressure, volume, temperature, and amount of gas. Although their measurements were not precise by today’s standards, they were able to determine the mathematical relationships between pairs of these variables (e.g., pressure and temperature, pressure and volume) that hold for an ideal gas—a hypothetical construct that real gases approximate under certain conditions. Eventually, these individual laws were combined into a single equation—the ideal gas law—that relates gas quantities for gases and is quite accurate for low pressures and moderate temperatures. We will consider the key developments in individual relationships (for pedagogical reasons not quite in historical order), then put them together in the ideal gas law
Answer:
hindi ko alam
Explanation:
Sorry sana wag nyong irereport
sabihin nyo nalahat ng masama sa akin basta wag nyong irereport!