Answer:
Explanation:
There are two main types of ocean currents: currents driven mainly by wind and currents mainly driven by density differences. Density depends on temperature and salinity of the water. Cold and salty water is dense and will sink. Warm and less salty water will float.
Explanation:
You have a solution that contains 36 g HCl dissolved in 64 g water
Molar mass HCl = 36.45 g/mol
Mol HCl in 36 g = 36 g / 36.45 g/mol = 0.9876 mol
Molar mass H2O = 18 g/mol
Mol H2O in 64 g = 64 g / 18 g/mol = 3.5556 mol
Total mol = 0.9875 + 3.5556 = 4.5431 mol
Mol fraction HCl = 0.9876 mol / 4.5431 mol = 0.2174
Mol fraction H2O = 3.5556 / 4.5431 = 0.7826
The answer should have 2 significant digits:
Mol fraction HCl = 0.22
Mol fraction H2O = 0.78
Mol fraction has no units.
THAT IS HELPFUL FOR YOU
PLEASE MARK ME AS A BRAINLIST
Answer and Explanation:
<u>D) 7 is the answer</u>
Together, the crust and the upper part of the mantle form the lithosphere, Earth's solid outer shell. This rocky, brittle layer is broken up into seven major and several minor tectonic plates (also known as lithospheric plates) that fit together like puzzle pieces.
<u><em>#teamtrees #PAW (Plant And Water)</em></u>
Answer:
A. 96.3 mg/dL
Absolute error: 5.7 mg/dL
Relative error: 5.6%
B. 97.2 mg/dL
Absolute error: 4.8 mg/dL
Relative error: 4.7%
C. 104.8 mg/dL
Absolute error: 2.8 mg/dL
Relative error: 2.7%
D. 111.5 mg/dL
Absolute error: 9.5 mg/dL
Relative error: 9.3%
E. 110.5 mg/dL
Absolute error: 8.5 mg/dL
Relative error: 8.3%
Explanation:
The formula for the absolute error is:
Absolute error = |Actual Value - Measured Value|
The formula for the relative error is:
Relative error = |Absolute error/Actual value|
In your exercise, we have that
Actual Value = 102.0 mg/dL
A. 96.3 mg/dL:


B. 97.2 mg/dL


C. 104.8 mg/dL


D. 111.5 mg/dL


E. 110.5 mg/dL


Answer : The correct expression will be:

Explanation :
The chemical reactions are :
(1)

(2)

The final chemical reaction is :

Now we have to calculate the value of
for the final reaction.
Now equation 1 is multiply by 2 and then add both the reaction we get the value of 'K'.
If the equation is multiplied by a factor of '2', the equilibrium constant will be the square of the equilibrium constant of initial reaction.
If the two equations are added then equilibrium constant will be multiplied.
Thus, the value of 'K' will be:
