Answer:
Explanation:
When we react Hydrochlorid Acid with zinc we have the following reaction:
2HCl(aq) + Zn(s) --> ZnCl2(aq) + H2(g)
The hydrogen gas formed is lost to the environment, so we can affirme that in the start we have the mass for all the H, Cl and Zn atoms in the solution, but after the reaction occurs, we have only the mass for the Cl and Zn atoms.
That's why the mass is less than the original.
The law that the student was told is only applied to closed environments.
There are several units for expressing energy, Most common are joules and kilocalories.
The conversion factor of joule to kilocalories is
1 kilo calorie = 4184 J
∴ x kilo calorie = 256 J
x =

kilo calories
Thus, 256 J = 0.0611 kilocalories
Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
The energy transferred on the object is 1000 Joules.
Given:
An object on which a constant force of 100 N was applied to displace it over a distance of 10 meters.
To find:
The energy transfer occurs on the object.
Solution
The force applied on the object = F = 100 N
The displacement of the object = d = 10 m
The energy transferred on the object or work done is given by:

The energy transferred on the object is 1000 Joules.
Learn more about work done here:
brainly.com/question/8119756?referrer=searchResults
brainly.com/question/3951672?referrer=searchResults
N=2 (always first number), l=1 (corresponds to p), ml=(-1 to 1)