Answer:
<h3>The answer is 4.65 moles</h3>
Explanation:
To find the number of moles given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question
N = 2.8 × 10²⁴ atoms of Cl2
So we have

We have the final answer as
<h3>4.65 moles</h3>
Hope this helps you
Molarity = moles of solute/volume of solution in liters.
The solute here is NaCl, of which we have 46.5 g. To calculate the molarity of an NaCl solution, we need to know the number of moles of NaCl. To convert from grams to moles, we divide the mass by the molar mass of NaCl. The molar mass of NaCl is the sum of the atomic masses of Na and Cl: 23 amu + 35 amu = 58 amu. For our purposes, we can regard amu as equivalent to grams/mole.
(46.5 g)/(58 g/mol) = 0.8017 moles NaCl.
Now that we know both the number of moles of our NaCl solute and the volume of the solution, we can calculate the molarity:
(0.8017 moles NaCl)/(2.2 L) = 0.364 M.
Answer:
Beryllium (Be) : 9.01 g/mol
Silicon (Si) : 28.09 g/mol
Calcium (Ca) : 40.08 g/mol
Rhodium (Rh) : 102.91 g/mol
Explanation:
Answer:
If the half-life of 14C is 5730 years, when this period of time has passed it will have been halved, it is called the exponential decay law of radioactive isotopes.
Answer:
Density is a measure of the amount of mass that is packed into a specific volume.
Explanation:
Density=mass/volume