One thing to notice in the question is, we are asked about molecular oxygen that has formula O2 not atomic oxygen O.
As we are asked about molecular oxygen, we will answer the question in terms of number of molecules that are present in 16 grams of molecular oxygen.
To get the number of molecules present in 16 grams of O2, we will use the formula:
No. of molecules = no. of moles x Avogadro's number (NA)----- eq 1)
As we know:
The number of moles = mass/ molar mass of molecule
Here we have been given mass already, 16 grams and the molar mass of O2 is 32 grams.
Putting the values in above formula:
= 16/32
= 0.5 moles
Putting the number of moles and Avogadro's number (6.02 * 10^23) in eq 1
No. of molecules = 0.5 x 6.02 * 10^23
=3.01 x 10^23 molecules
or 301,000,000,000,000,000,000,000 molecules
This means that 16 grams of 3.01 x 10^23 molecules of oxygen.
Hope it helps!
Blade resistance hair motion pull down
Polarity, cohesion, adhesion, surface tension, high specific heat, and evaporating cooling
The particles in a solid are tightly packed and locked in place. Although we cannot see it or feel it, the particles are vibrating in place.
As these molecules heat up, they will vibrate more vigorously, and will eventually turn to water, then gas.