Answer: The empirical formula for the given compound is 
Explanation : Given,
Percentage of C = 38.8 %
Percentage of H = 16.2 %
Percentage of N = 45.1 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of C = 38.8 g
Mass of H = 16.2 g
Mass of N = 45.4 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 3.23 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of C : H : N = 1 : 5 : 1
Hence, the empirical formula for the given compound is 
Answer:
C. It is hard to recreate the extremely high temperatures and pressures found inside stars.
Explanation:
Nuclear fusion occurs when atomic nuclei are forcefully combined to create a new atomic nuclei or subatomic particles. In nature, this process takes place in our Sun and other stars. Within stars, extremely high temperatures and pressures are achieved and cause nuclear fusion to occur. Humans have not yet been successful in recreating the environment necessary to mimic this process.
Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.
(20*1000)÷(molecular weight of H3po4*50)
Answer:
The correct answer is that it is made of atoms that are covalently bonded together.
Explanation:
Hope this helped Mark BRAINLEST!!!