1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
8

A negative ion of charge -2e is located at the origin and a second negative ion of charge -3e is located nearby at x = 3.8 nm ,

y = 3.2 nm .
Part A) Find the force on the ion of charge -2e. Express your answer in vector components, separated by commas, using two significant figures.

Physics
1 answer:
Rus_ich [418]3 years ago
7 0

Answer:

\vec{F}_{21}=-5.63\times 10^{-11}N\\\\\vec{F}_{21}=\\

Explanation:

Given that

Q_1 = -2e\, C\\\\Q_2=-3e\,C\\\\x= 3.8 \times 10^{-9}\,m\\\\y= 3.2 \times 10^{-9}\,m\\\\r=\sqrt{x^2+y^2}\\\\r= 4.96\times 10^{-9} m\\

As both charges are negative so there exist force of repulsion in direction as shown in figure.

F_{12}=\frac{kQ_1Q_2}{r^2}\\\\F_{12}= \frac{(9\times 10^9)(6)(1.602\times 10^{-19})^2}{(4.96\times 10^{-9})^2}\\\\F_{12}=5.63\times 10^{-11}N

Angle at which force F12 is acting is

\theta=tan^{-1}\frac{3.2}{3.8}\\\\\theta=tan^{-1}\frac{y}{x}\\\\\theta= 40.1^o

F_{x}=F_{12}cos\theta\\\\F_{x}=(5.63\times 10^{-11})cos(40.1)\\\\F_{x}=4.306\times 10^{-11}N\\\\F_{y}=F_{12}sin\theta\\\\F_{y}=(5.63\times 10^{-11})sin(40.1)\\\\F_{y}=3.62\times 10^{-11}N\\\\

\vec{F}_{12}=\vec{F}_{x}+\vec{F}_y\\\\\vec{F}_{12}=4.30\times 10^{-11}\,\hat{i} + 3.62\times 10^{-11}\,\hat{j}\\\\\vec{F}_{12}=

Force exerted on charge -2e is equal in magnitude to F12 but is in opposite direction

F_{21}=-5.63\times 10^{-11}N

\vec{F}_{21}=

You might be interested in
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
A piece of transparent material that is used to focus light and form a image
Soloha48 [4]

Convex Lenses are used to focus light and form a image. They are transparent.

They are one type of lenses. Different type of lenses are used to focus light differently. The basic lenses are concave and convex. Convex lenses converge light falling on it whereas concave lenses diverge light falling on it.

4 0
3 years ago
Read 2 more answers
What type of collision is being described in each statement.
Ostrovityanka [42]

Answer:

inelastic, since the girl moves in the same direction as the thrown ball

Explanation:

yess this ok

UwU

7 0
2 years ago
A car travels 40 miles in 30 minutes.
lukranit [14]

Answer:

(a)Average velocity ,v =128.74 Km/hr

(b)Kinetic Energy , K=958546.875 Joule

(c)Distance, s=268.8m

(d)Acceleration, a= - 2.38 m/s^2

<u>Explanation</u>:

<u>Given</u>:

Distance travelled = 40 miles

Time taken = 30 minutes.

(A) The average velocity in kilometres/hour

Converting 40 miles into km ,

we know that,

1 mile = 1.60934

40 miles =  40 x 1.60934

so 40 miles  =  64.3738 Km

similarly converting 30 minutes into hours

1 minute = \frac{1}{60}hours

30 minute = \frac{30}{60}hours

30 minute = \frac{1}{2}hours

Now

Average velocity = \frac{Speed}{time}

Substituting Values,

Average velocity = \frac{64.3738}{\frac[1}{2}}

Average velocity = 64.3738 \times 2

Average velocity =128.74 Km/hr

(B) If the car weighs 1.5 tons, what is its If the car weighs 1.5 tons, what is its kinetic energy in joules (Note: you will need to convert your velocity to m/s)? in joules (Note: you will need to convert your velocity to m/s)?

Converting 1.5 tons into kg we get

1 ton = 1000 kg

so 1.5 ton =1500 kg

converting  velocity to m/s

128.74  \times \frac{5}{18}

=>35.75 m/s----------------------------------------------------------(1)

kinetic energy  K= \frac{1}{2}mv^2

Substituting the values,

K= \frac{1}{2}1500(35.75)^2

K= \frac{1}{2}1500(1278.06)

K= \frac{1500 \times (1278.06)}{2}

K= \frac{1917093.75}{2}

K=958546.875 Joule---------------------------------------------(2)

(c)When the driver applies the brake, it takes 15 seconds to stop. How far does the car travel (in meters) while stopping

Lets use Distance formula,

S= ut+\frac{1}{2}at^2

Substituting the known values,

s= ut+\frac{1}{2}at^2

s= (37.75)(15)+\frac{1}{2}a(15)^2

s=566.25+\frac{1}{2}a(225)

s=566.25+\frac{(225a)}{2}-------------------------------------(3)

(D) What is the average acceleration of the car (in m/s2) during braking?

Using the formula

v=u +at

re arranging the formula we get,

a = \frac{v - u}{t}

Substituting the values

a = \frac{0 - 35.75}{15}

a = \frac{- 35.75}{15}

a= - 2.38 m/s^2----------------------------------------(4)

Now substituting 4 in 3 we get

s=566.25+\frac{(225( - 2.38)}{2}

s=566.25+\frac{-535.5}{2}

s=536.25-267.75

s=268.8m--------------------------------------------------------------(5)

4 0
3 years ago
Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.
andreev551 [17]

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

3 0
3 years ago
Other questions:
  • Two iron blocks are the same size. One block has a higher temperature than the other. Which describes the thermal energy of thes
    12·1 answer
  • An object that is in free fall seems to be
    12·1 answer
  • prove that the rate of heat production in each of the two resistors connected in parallel are inversely proportional to the resi
    7·1 answer
  • In a closed system, the loss of momentum of one object ________ the gain in momentum of another object.
    11·1 answer
  • Please verify these are correct. No work needs to be shown unless I've made a mistake. Thank you.
    8·2 answers
  • If an electric circuit is not grounded it is best to reach out and touch it to provide the ground A.True or B.False
    15·1 answer
  • How do forces cause a wave
    7·1 answer
  • 7) List three (3) automobile safety features currently used to minimize the risk of injury to its passengers. Relate these
    12·1 answer
  • Explain why the radiative zone of the sun is hotter than the corona of the sun
    7·1 answer
  • An oil has a kinematic viscosity of 1.25 × 10^-4 and a specific gravity of 0.8. What is the viscosity of this oil in SI unit of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!