Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.
Motorcycle helmets are padded to give the rider the protection they require in case of accidents. Any hit to the head is absorbed by the padding and the rider is saved from any kind of fatal injury. Whenever a motorcycle rider falls from his motorcycle, there is every possibility that the head will hit the ground first. If the padding was not there, then the rider would get the direct impact of hitting. As most of the pressure of the hit gets absorbed by the inner padding of the helmet, so the rider is saved from the fatal accident. It does not mean that the driver will not have minor injuries but by all chance his life would be saved.
Answer:
B : is independent of the natural frequency of the oscillator
Explanation:
You can apply any force you like to a natural oscillator. It is independent of the natural frequency of the oscillator.
The result you get will depend on how the frequency of the applied force and the natural frequency relate to each other. It will also depend on the robustness of the oscillator with respect to the applied force.
Clearly, if the force is small enough, it will have no effect on the oscillator. If it is large enough, it will overpower any motion the oscillator may attempt. For forces in the intermediate range, there will be some mix of natural oscillation and forced behavior. One may modulate the other, for example.
I honestly don't see anything above. But 'H' on a weather map usually shows the center of a high-pressure system.