Average v = (initial v + final v)/2
= (14 m/s + 0 m/s)/2
= 7 m/s
Your average velocity during braking is 7 m/s
True statements that reflect why infants experience more fluid and electrolyte changes are that dehydration can upset the balance of electrolytes in an infant or child and the newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin.
As infants are not used to the environment around , they are more sensible towards problems such as Dehydration because of fast metabolism.
Dehydration can upset the balance of electrolytes in an infant or child. Children are especially vulnerable to dehydration due to their small size and fast metabolism, which causes them to replace water and electrolytes at a faster rate than adults.
Infants are particularly prone to the effects of dehydration because of their greater baseline fluid requirements (due to a higher metabolic rate), higher evaporative losses (due to a higher ratio of surface area to volume), and inability to communicate thirst or seek fluid.
The newborn is at risk of excessive water loss and hypernatremia as the result of high evaporative water loss through the skin, insensible water loss (IWL), as well as decreased capacity to concentrate the urine.
To Learn more about dehydration here
brainly.com/question/12261974?referrer=searchResults
#SPJ4
Momentum of the wagon increases by (200 x 3)
= 600 newton-sec
= 600 kg-m/sec
Answer:
Her angular speed (in rev/s) when her arms and one leg open outward is 1.4 rev/s
Explanation:
given information:
moment inertia of arm and leg when in, I₁ = 0.9 kgm²
moment inertia of arm and leg when extended, I₂ = 2.9 kgm²
angular speed when in, ω₁ = 4.5 rev/s
so, her angular speed (in rev/s) when her arms and one leg open outward is
L₁ = L₂
I₁ω₁ = I₂ω₂
ω₂ = I₁ω₁/I₂
= 0.9 x 4.5/2,9
= 1.4 rev/s