1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
3 years ago
5

Keisha writes that if an object has any external forces acting on it, then the object can be in dynamic equilibrium but not

Physics
1 answer:
Westkost [7]3 years ago
8 0

Answer:

An object in either state of equilibrium must have no net force acting on it.

Explanation:

You might be interested in
You are working out on a rowing machine. Each time you pull the rowing bar (which simulates the oars) toward you, it moves a dis
tangare [24]

Answer:

56.86153 N

Explanation:

t =Time taken

F = Force

Power

P=\frac{W}{t}\\\Rightarrow W=P\times t\\\Rightarrow W=77\times 0.96\\\Rightarrow W=73.92\ Joules

Work done

W=F\times s\\\Rightarrow F=\frac{W}{s}\\\Rightarrow F=\frac{73.92}{1.3}\\\Rightarrow F=56.86153\ N

The magnitude of the force that is exerted on the handle is 56.86153 N

5 0
3 years ago
With what speed must you approach a source of sound to observe a 25% change in frequency?
insens350 [35]
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:

f = f0(1 + v/c)

115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span> v = 51,45 m/s </span>
5 0
3 years ago
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
As the mass of an object increases so does its gravitational force. <br> a. True <br> b. False
vichka [17]

Answer:

False

Explanation:

Gravity force is constant.

There some places on Earth that gravity has a variation, but in general, it is the same everywhere.

If you analyze the equation for the weight, which is the action of the gravity to mass, you'll see that W=mg, where m is the mass and g, is gravity.

If you increase the mass, what you are increasing is weight and not gravity.

3 0
3 years ago
Statement that combines energy and mass into one law
inysia [295]

Answer:

The law of conservation of mass or principle of mass conservation

Explanation:

It states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.

5 0
3 years ago
Other questions:
  • What type of element loses electrons in ionic bonding, and what type of charge will it create?
    10·1 answer
  • Which factors are most significant in describing the climate of a region?
    8·1 answer
  • Which of the following happens when unbalanced forces act on an object? The object remains stationary. The object moves with the
    5·2 answers
  • A cat walks along a plank with mass M= 7.00 kg. The plank is supported by two sawhorses. The center of mass of the plank is a di
    13·1 answer
  • As your bike coasts downhill, your speed goes from 2 m/s to 4 m/s in 0.5 seconds. What is your acceleration?
    8·2 answers
  • A spaceship departs from Earth for the star Alpha Centauri, which is 4.37 light-years away. The spaceship travels at 0.70c. 1) W
    13·1 answer
  • How do exhaust from cars affect the environment
    13·1 answer
  • Please guys help me plz for god sake plz plz guys plz plz plz i will mark u as a brainlist plz​
    13·1 answer
  • Which of the following statements are true with respect to the law of conservation of mass?
    15·1 answer
  • . Calculate the magnetic force on a current carrying conductor.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!