Answer: Option (3) is the correct answer.
Explanation:
Aerobic organisms are the organisms which survive and grow in the presence of oxygen.
When oxidation of glucose occurs in the presence of oxygen then it is known as aerobic respiration.
In aerobic respiration, food releases energy to produce ATP which is necessary for cell activity. There is complete breakdown of glucose in aerobic respiration that is why more energy is released. Therefore, aerobic organisms become active.
Thus, we can conclude that characteristics very active, efficient use of energy describes aerobic organisms.
During cellular respiration, the carbon and hydrogen atoms change partners and bond with oxygen atoms instead. The carbon-hydrogen bonds are replaced by carbon-oxygen and hydrogen-oxygen bonds. As the electrons of these bonds "fall" toward oxygen, energy is released.
The subscriot 2 means that in the formula there are two parts of K, and the subscript 1 (implicit) for S, indicates that there is one part of S.
This is, the formula gives the ratio of the elements K and S in the compound, which is:
2 atoms of K : 1 atom of S.
Answer: there are 2 atoms of K and 1 atom of S in a molecule of K2S.
Ionic crystals are hard because of tight packing lattices, say, the positive and negative ions are strongly attached among themselves.
Answer:
0.33 mol/kg NH₃
Explanation:
Data:
b(NH₃) = 0.33 mol/kg
b(Na₂SO₄) = 0.10 mol/ kg
Calculations:
The formula for the boiling point elevation ΔTb is

i is the van’t Hoff factor — the number of moles of particles you get from a solute.
(a) For NH₃,
The ammonia is a weak electrolyte, so it exists almost entirely as molecules in solution.
1 mol NH₃ ⟶ 1 mol particles
i ≈ 1, and ib = 1 × 0.33 = 0.33 mol particles per kilogram of water
(b) For Na₂SO₄,
Na₂SO₄(aq) ⟶ 2Na⁺(aq) + 2SO₄²⁻(aq)
1 mol Na₂SO₄ ⟶ 3 mol particles
i = 1 and ib = 3 × 0.10 = 0.30 mol particles per kilogram of water
The NH₃ has more moles of particles, so it has the higher boiling point.