Answer:
The correct answer is B the tertiary halides reacts faster than primary halides.
Explanation:
During SN2 reaction the nucleophile attack the alkyl halide from the opposite side resulting in the formation of transition state in which a bond is not completely broken or a new bond is not completely formed.
After a certain period of time the nucleophile attach with the substrate by substituting the existing nuclophile.
An increase in the bulkiness in the alkyl halide the SN2 reaction rate of that alkyl halide decreases.This phenomenon is called steric hindrance.
So from that point of view the that statement tertiary halides reacts faster that secondary halide is not correct.
Answer:
thay all are different from each other
Answer:
*2Kl+Pb(NO3)2=PbI2+2KNO3: double replacement.
*2Al+3CuSO4=Al2(SO4)3+3Cu: single replacement.
*C2H5OH+3O2=2CO2+3H2O: combustion.
Explanation:
Hello there!
In this case, according to the required, it turns out necessary for us to recall the five types of reactions, combination, decomposition, single and double replacement and combustion as shown on the attached figure.
In such a way, since the first reaction follows the pattern AB+CD-->AD+CB we infer it is double replacement; the second reaction follows the patter A+BC-->AC+B and therefore it is single replacement; and the last one follows the pattern of combustion reaction due to the presence of CO2 and H2O on the products side.
Regards!
Explanation:
Matter also exhibits physical properties. Physical properties are used to observe and describe matter. Physical properties can be observed or measured without changing the composition of matter. These are properties such as mass, weight, volume, and density.
Answer:
<u>7.44 grams CaCl2 will produce 10.0 grams KCl.</u>
Explanation:
The equation is balanced:
I've repeated it here, with the elements corrected for their initial capital letter.
CaCl2( aq) K2CO3( aq) → 2KCl( aq) CaCO3( aq)
This equation tells us that 1 mole of CaCl2 will produce 2 moles of KCl.
If we want 10.0g of KCl, we need to convert that mass into moles KCl by dividing by the molar mass of KCl, which is 74.55 grams/mole.
(10.0 grams KCl)/(74.55 grams/mole) = 0.1341 moles of KCl.
We know that we'll need half that amount of moles CaCl2, since the balanced equation says we'll get twice the moles KCl for every one mole CaCl2.
So we'll need (0.1341 moles KCl)*(1 mole CaCl2/2moles KCl) = 0.0671 moles CaCl2.
The molar mass of CaCl2 is 110.98 grams/mole.
(0.0671 moles CaCl2)*(110.98 grams/mole) = 7.44 grams CaCl2
<u>7.44 grams CaCl2 will produce 10.0 grams KCl.</u>