Answer:150g of gold
Explanation: There is a lot more gold and gold is significantly significantly more dense than lithium
Did you know conventional argult culture has increased greenhouse gas emissions, soil erosion, water pollution, and threatened humans health. Let’s stop this from harming our environment and take action about this today. Organic farming has a smaller carbon footprint, conserves and builds soil, replenishes natural ecosystems for cleaner water and air, all with a toxic pesticide residues.
According to the chemical equation, the reaction ratio between O2 and CO2 is 2:1, which mean for every 2 moles of O2 reacted there is 1 mole of CO2 formed.
Use the molar mass and mass of O2 to find out the moles of O2: moles of O2 = mass of O2/molar mass of O2 = 8.94g/32.00g/mol = 0.2794 mole. Therefore, the moles of CO2 that formed is 0.2794moles/2 = 0.1397 mole
Use the moles and molar mass CO2 to find out the mass of CO2:
Mass of CO2 = moles of CO2 * molar mass of CO2 = 0.1397 mole * .44.01g/mole = 6.15 g.
So the answer is B 6.15g.
Answer:
179.0 g of iridium (1 mol / 192.217 g) ( 6.022 x 10^23 atoms / 1 mol ) = 5.61 x 10^23 atoms of iridium
Explanation:
Answer:
Redox reaction and single displacement
Explanation:
This reaction is first of all a redox reaction. A redox reaction is a reaction that involves both oxidation and reduction. Oxidation involves increase in oxidation number while reduction involves decrease in oxidation number.
Copper (Cu) had an oxidation number of "0" as a reactant but had an oxidation number of "2+" in the product [Cu(NO₃)₂] hence oxidation occurred.
Nitrogen (N) had an oxidation number of "5+" in the reactant (HNO₃) but had an oxidation number of "4+" in the product (NO₂) hence reduction also occurred.
Also, from the reaction, it can be deduced that copper (Cu) displaced hydrogen (H) from the nitric acid (HNO₃) solution to form copper (II) nitrate [Cu(NO₃)₂]. It should be noted that copper can displace hydrogen because it is higher than hydrogen in the electrochemical series. Hence, this reaction can also be called a single displacement reaction. A single displacement reaction is a reaction in which an atom of an element replaces another atom in a compound (as seen in the equation given in the question).