Answer:
See explanation and image attached
Explanation:
The reaction of 1-bromo-2-tert-butylcyclohexane with potassium tert-butoxide is an elimination reaction that occurs by E2 mechanism.
The E2 reaction proceeds faster when the hydrogens are in an antiperiplanar position at an angle of 180 degrees.
This is only attainable in the trans isomer of 1-bromo-2-tert-butylcyclohexane. Hence trans 1-bromo-2-tert-butylcyclohexane reacts faster with potassium tert-butoxide
Iron doesn't fit because it doesn't have enough atoms or protons in its nucleus so there for it belongs in column 2. <span />
Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J


ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Answer:
Na the valency electrons is 1
The ion charge is positive 1
K the valency electrons is 1
The ion charge is positive 1
Explanation:
Mg the valency electron is 2 The ion charge is positive 2
Ca the valency electron is 2 The ion charge is positive 2
Al the valency electron is 3 The ion charge is positive 3
O the valency electron is 2 The ion charge
is negative 2
F the valency electron is 1 The ion charge is negative 1
Cl the valency electron is 1 The ion charge
is negative 1
N the valency electron is 3 The ion charge is negative 3
S the valency electron is 2 The ion charge is
negative 2
Answer:
E = 16 J
Explanation:
We have,
You put scruffy can run up to 2 m/s on his fastest days scruffy has a mass of 8 kg
It is required to find the maximum kinetic energy on his fastest days. If v is the velocity, then kinetic energy is given by :

Plugging all the values,

So, the maximum kinetic energy on his fastest day is 16 J.