Answer:
1.414 Moles
Solution:
Data Given:
Mass of MgS₂O₃ = 193 g
M.Mass of MgS₂O₃ = 136.43 g.mol⁻¹
Moles = ?
Formula Used:
Moles = Mass ÷ M.Mass
Putting values,
Moles = 193 g ÷ 136.43 g.mol⁻¹
Moles = 1.414 mol
Before proceeding, we should write the reaction equation to better understand what is happening:
2AgNO₃ + Na₂S → Ag₂S + 2NaNO₃
Now, we may apply the law of conservation of mass, due to which the total mass before a chemical reaction is equivalent to the total mass after a chemical reaction. Therefore:
Mass of silver nitrate + mass of sodium sulfide = mass of silver sulfide + mass of sodium nitrate
Mass of silver nitrate + 156.2 = 595.8 + 340
Mass of silver nitrate = 779.6 grams
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
PV = nRT. Where P = pressure, V = volume, n = number of moles, R = universal gas constant and T = temperature. Hope this helps!