The moment of inertia of a uniform solid sphere is equal to 0.448
.
<u>Given the following data:</u>
Mass of sphere = 7 kg.
Radius of sphere = 0.4 meter.
<h3>How to calculate moment of inertia.</h3>
Mathematically, the moment of inertia of a solid sphere is given by this formula:

<u>Where:</u>
- I is the moment of inertia.
Substituting the given parameters into the formula, we have;

I = 0.448
.
Read more on inertia here: brainly.com/question/3406242
Answer:
If a vertical line extending down from an object's CG extends outside its area of support, the object will topple
Explanation:
We can understand better this situation using a diagram with the forces acting on it.
In the attached image we can see that when the gravity center is bouncing outside from the area of the pedestal, the object will be out of balance and will fall.
Answer:
Explanation:
This is a problem based on time dilation , a theory given by Albert Einstein .
The formula of time dilation is as follows .
t₁ = 
t is time measured on the earth and t₁ is time measured by man on ship .
A ) Given t = 20 years , t₁ = ? v = .4c

=1.09 x 20
t₁= 21.82 years
B ) Given t = 5 years , t₁ = ? v = .2c

=1.02 x 5
t₁= 5.1 years
C ) Given t = 10 years , t₁ = ? v = .8c

=1.67 x 10
t₁= 16.7 years
D ) Given t = 10 years , t₁ = ? v = .4c

=1.09 x 10
t₁= 10.9 years
E ) Given t = 20 years , t₁ = ? v = .8c

=1.67 x 20
t₁= 33.4 years
Answer:
Most of the EM waves from the sun that reach Earth are infrared waves, visible light, and UV radiation.
Explanation:
I hope this helps! Have a good day!
Answer:
1.2 × 10^27 neutrons
Explanation:
If one neutron = 1.67 × 10^-27 kg
then in 2kg...the number of neutrons
; 2 ÷ 1.67 × 10^-27
There are.... 1.2 × 10^27 neutrons