Answer:
71 Ga has a naturally abundance of 36%
Explanation:
Step 1: Given data
Gallium has 2 naturally occurring isotopes: this means the abundance of the 2 isotopes together is 100 %. The atomic weight of Ga is 69.72 amu. This is the average of all the isotopes.
Since the average mass of 69.72 is closer to the mass of 69 Ga, this means 69 Ga will be more present than 71 Ga
Percentage 69 Ga> Percentage 71 Ga
<u>Step 2:</u> Calculate the abundance %
⇒Percentage of 71 Ga = X %
⇒Percentage of 69 Ga = 100 % - X %
The mass balance equation will be:
100*69.72 = x * 71 + (100 - x)*69
6972 = 71x + 6900 -69x
72 = 2x
x = 36 %
71 Ga has a naturally abundance of 36%
69 Ga has a naturally abundance of 64%
Answer:
The period 4 alkaline-earth metal has the name Calcium. An isotope of this element having 20 neutrons has a mass number of 40.
Explanation:
Looking at the periodic table 4th row for the alkaline-earth metal, we can find Calcium which has an atomic number of 20 (or protons number, or z). The mass number is given by the sum of protons and neutrons. If the number of protons in this case is 20 and the number of neutrons is also 20, the mass number A = 40.
Answer:
we need 6.0 moles of zinc (Zn)
Explanation:
Step 1: Data given
Number of moles ZnO produced = 6.0 moles
Step 2: The balanced equation
2 Zn + O2 → 2 ZnO
For 2 moles Zinc we need 1 mol Oxygen to produce 2 moles Zinc oxide
Step 3: Calculate moles zinc
For 2 moles Zn we need 1 mol O2 to produce 2 moles ZnO
For 6.0 moles 2nO produced, we need 6.0 moles of zinc (Zn) and 3.0 moles of O2 to react.
Answer:
I think the answer is forest
Kp= (COCl2)/[(CO)(Cl2)]= 1.49 x 10^8
1.49 x 10^8= (COCl2/((2.22x10-4)(2.22x10-4))
COCl2= 1.49x10^8 x ((2.22x10-4)(2.22x10-4))= 7.34 atm