Standard temperature and pressure (STP) means a temperature of 0°c and a pressure of 1 atmosphere (atm). The molar gas volume is used to convert between the number of moles of a gas and the volume of the gas at STP. One mole of a gas occupies a volume of 22400 cm³ or 22.4 liters at STP according to the molar gas volume.
Answer:
The chronic daily intake during the period of exposure is most nearly 0.012 mg/kg day.
Explanation:
Number of hours worker exposed to xylene = 
The concentration of xylene in the workplace =
The worker is inhaling air at a rate of
.
Amount xylene inhaled by worker in an hour :
= 
Amount xylene inhaled by worker in 320 hours:

1 μg = 0.001 mg
Amount xylene inhaled by worker in 320 hours = 11.520 mg
1 day = 24 hours
Amount xylene inhaled by worker in 1 day:

Assuming 70 kg body mass, the chronic daily intake of xylene :

The chronic daily intake during the period of exposure is most nearly 0.012 mg/kg day.
Answer:
Lattice energy is <em>the energy required to convert a mole of ionic solid into its constituent ions in the gas phase</em>
Explanation:
Lattice energy is usually calculated by the Born-Haber cycle, from the affinity energies and sublimation ethalphy values. It is used as an estimation of the ionic energy strength between the ions in an ionic compound.
It is defined as the energy needed to broke 1 mol of a given ionic compound into its ions in the gaseous state. For example, the lattice energy for sodium chloride (NaCl) is the energy required to separate 1 mol of solid ionic compound (NaCl(s)) and produce the sodium and chlorine ions in the gas phase: Na⁺(g) and Cl⁻(g).
In a bag of peas that weighs 454 grams, there are between 1261 and 4540 peas.
The average pea weighs between 0.1 and 0.36 grams.
If we take the lower value (0.1 g/pea), the number of peas in 454 g is:

If we take the higher value (0.36 g/pea), the number of peas in 454 g is:

In a bag of peas that weighs 454 grams, there are between 1261 and 4540 peas.
You can learn more about conversion factors here: brainly.com/question/1844638
Answer:
Unsaturated
Explanation:
In order to successfully answer this question, we need to think about the solubility of solutes in specific solvents, typically water.
- A solution is considered to be unsaturated if at a given temperature and volume of water we may still add more solute and it will dissolve;
- A solution is considered to be saturated if at a given temperature and volume of water we have a maximum amount of solute dissolved and trying to add more solute results in undissolved crystals that can be seen in the solution;
- A solution is considered to be oversaturated (or supersaturated) i at a given temperature and volume of water we exceeded the maximum amount of a solute that could possibly dissolve.
In this case, if we can continue to add more solute to a solution and the solute dissolves, we may state that we are still at a point in which we have an unsaturated solution.