On the earth there is the top layer dirt then loam comes next
The number is written in scientific notation.
The significant figures are the numbers known precisely plus 1 digit that is uncertain.
When the numbers are expressed in scientific notation all the digits before 10^n are significant.
So, 7 and 8 are significant figures and the answer is that the number of significant figures is 2.
Answer: 2
B.
The cynobacteria were already there without the oxygen, so that rules out A, and a lot of prokaryotes were anaerobic, so that rules out C. Finally, Photosynthesis does not require oxygen. Instead, Oxygen is a waste product of it. Therefore, it cannot be D. So, we are only left with B
Hoped this helped :D
I think the correct answer would be the last option. The ocean zone which has the lowest water pressure would be the uppermost zone which is the Epipelagic zone. This zone is also called as the euphotic zone or the sunlit zone. It is the region which receives the most sunlight in order to allow photosynthesis.
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.