Answer:

Explanation:
From the question we are told that:
Charge 
Length 
Spring constant
Generally the equation for Force between Charges is mathematically given by



Therefore




A shock absorbent mattress is built such that the boxspring
of the bed absorbs pressure that is exerted to the bed. Hence, if you jump on
the mattress, you would not bounce up and down as much as a normal mattress
because the springs do not oscillate much. This is done to endure wear and
tear.
m1= mass 1 = 1.1 kg
Vi1 = initial velocity 1 = 2.7 m/s
m2= 2.4 kg
V2i = -1.9 m/s
We assume east as positive and west as negative.
Apply the formulas:
Vf1 = ?

Replacing:



Answer: 3.6 m/s west
What a delightful little problem !
Here's how I see it:
When 'C' is touched to 'A', charge flows to 'C' until the two of them are equally charged. So now, 'A' has half of its original charge, and 'C' has the other half.
Then, when 'C' is touched to 'B', charge flows to it until the two of <u>them</u> are equally charged. How much is that ? Well, just before they touch, 'C' has half of an original charge, and 'B' has a full one, so 1/4 of an original charge flows from 'B' to 'C', and then each of them has 3/4 of an original charge.
To review what we have now: 'A' has 1/2 of its original charge, and 'B' has 3/4 of it.
The force between any two charges is:
F = (a constant) x (one charge) x (the other one) / (the distance between them)².
For 'A' and 'B', the distance doesn't change, so we can leave that out of our formula.
The original force between them was 3 = (some constant) x (1 charge) x (1 charge).
The new force between them is F = (the same constant) x (1/2) x (3/4) .
Divide the first equation by the second one, and you have a proportion:
3 / F = 1 / ( 1/2 x 3/4 )
Cross-multiply this proportion:
3 (1/2 x 3/4) = F
F = 3/2 x 3/4 = 9/8 = <em>1.125 newton</em>.
That's my story, and I'm sticking to it.
The correct answer is letter C. Volume is decreasing. For a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume<span> are </span>inversely proportional<span>. </span>