Answer:
Francium has fewer valence electrons, but they are in a higher energy level
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
The Boiling point,melting point, surface tension and viscousity will increase while the Vapor pressure will decrease.
<h3 /><h3>What are intermolecular forces?</h3>
Intermolecular forces are the forces that bind two molecules together. Physical properties are affected by the strength of intermolecular forces
An increase in the strength of intermolecular forces increases will lead to an increase in force applied to break the barriers posed by the strength of the molecules.
This increased intermolecular strength will cause a rise in boiling point,melting point, viscousity and surface tension.
The Vapor pressure reduces with increasing intermolecular strength. Vapor pressure is the amount of vapor that is equilibrium with its own liquid or solid. Hence,with increasing intermolecular strength the amount of vapor that is in equilibrium with its own liquid will reduce.
To know more about intermolecular forces follow
brainly.com/question/13588164
#SPJ4
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
The east bound train travels at a speed of 95 mile per hour and the west bound train at 75 miles per hour.
Assuming eastbound train will cover distance x then the west bound train will cover distance 272-x .
Therefore, since time taken will be the same then; x/95 = (272-x)/75
= 75x = 95 (272-x)
= 75x = 25840 - 95x
= 170 x= 25840
x = 152 miles
Thus time taken will either be x/95 or (272-x)/75
= 152/95
= 1.6 hours or 1 hour 36 minutes